IGBT - Field Stop II

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop II Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co–packaged free wheeling diode with a low forward voltage.

Features

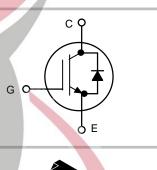
- Extremely Efficient Trench with Field Stop Technology
- $T_{Jmax} = 175^{\circ}C$
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- 10 µs Short Circuit Capability
- These are Pb–Free Devices

Typical Applications

- Solar Inverter
- Uninterruptible Power Inverter Supplies (UPS)
- Welding

ABSOLUTE MAXIMUM RATINGS

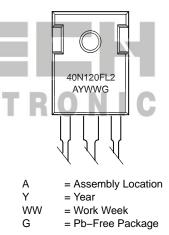
Rating	Symbol	Value	Unit
Collector-emitter voltage	VCES	1200	V
Collector current @ Tc = 25°C @ Tc = 100°C	lc	80 40	A
Pulsed collector current, T _{pulse} limited by T _{Jmax}	Ісм	200	A
Diode forward current @ Tc = 25°C @ Tc = 100°C	I _F 80 40		A
Diode pulsed current, T _{pulse} limited by T _{Jmax}	FM	200	A
Gate-emitter voltage Transient gate-emitter voltage $(T_{pulse} = 5 \ \mu s, D < 0.10)$	V _{GE}	±20 ±30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	PD	535 267	W
Short Circuit Withstand Time V_{GE} = 15 V, V_{CE} = 500 V, T_J \leq 150°C	T _{SC}	10	μs
Operating junction temperature range	TJ	-55 to +175	°C
Storage temperature range	T _{stg}	T _{stg} –55 to +175	
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

40 A, 1200 V V_{CEsat} = 2.0 V E_{off} = 1.10 mJ



MARKING DIAGRAM

GGG

Published by WWW.SK

ORDERING INFORMATION

Device	Package	Shipping
NGTB40N120FL2WG	TO–247 (Pb–Free)	30 Units / Rail

Publication Order Number:

NGTB40N120FL2W/D

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ extsf{ heta}JC}$	0.28	°C/W
Thermal resistance junction-to-case, for Diode	R_{\thetaJC}	0.5	°C/W
Thermal resistance junction-to-ambient	R_{\thetaJA}	40	°C/W

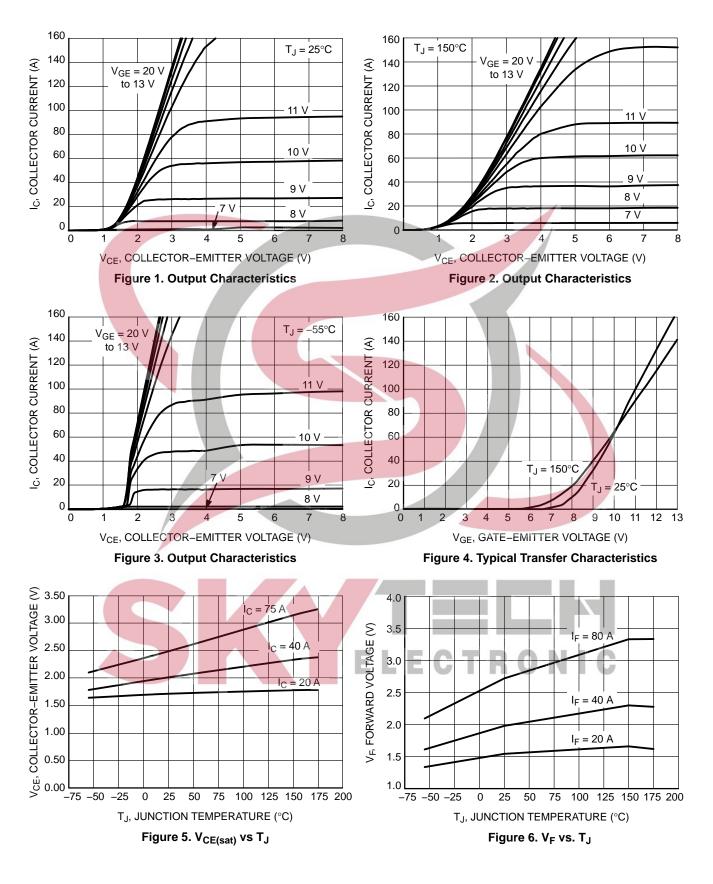
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC						
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I _C = 500 µA	V _{(BR)CES}	1200	-	-	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 40 A V _{GE} = 15 V, I _C = 40 A, T _J = 175°C	V _{CEsat}	-	2.00 2.40	2.40	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 400 \ \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 V, V_{CE} = 1200 V$ $V_{GE} = 0 V, V_{CE} = 1200 V, T_{J} = 175^{\circ}C$	ICES	-	-	0.1 2	mA
Gate leakage current, collector-emitter short-circuited	$V_{GE} = 20 \text{ V}$, $V_{CE} = 0 \text{ V}$	I _{GES}	-	_	200	nA

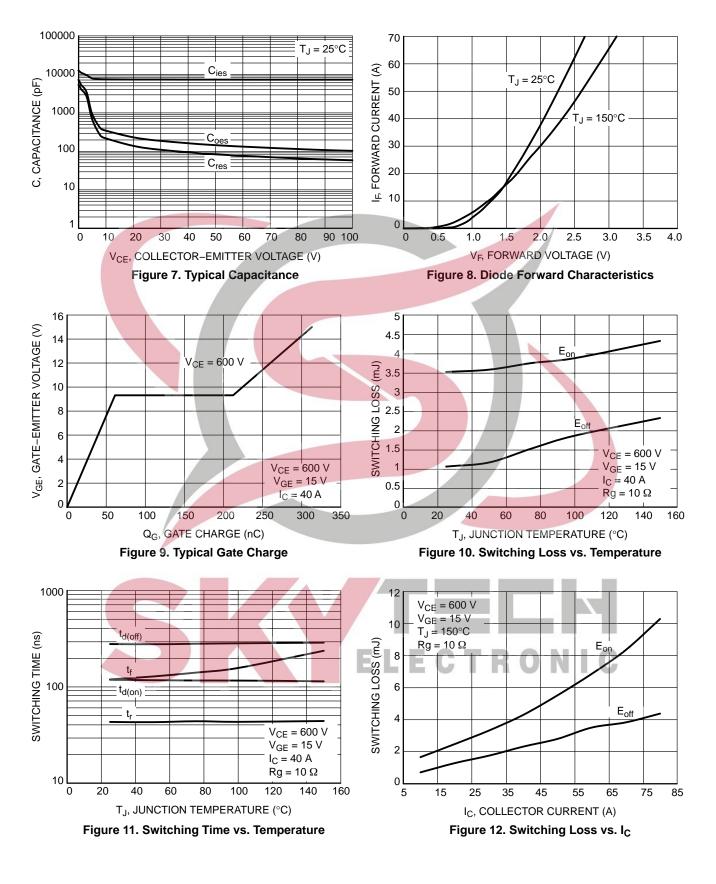
Input capacitance		Cies	—	7385	-	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	230	-	
Reverse transfer capacitance		C _{res}	-	140	-	
Gate charge total		Qg	-	313	-	nC
Gate to emitter charge	V_{CE} = 600 V, I_{C} = 40 A, V_{GE} = 15 V	Q _{ge}	-	61	-	
Gate to collector charge		Q _{gc}	-	151	-	

SWITCHING CHARACTERISTIC, INDUCTIVE LOAD

						1
Turn-on delay time		t _{d(on)}	-	116	-	ns
Rise time		t _r	-	42	-	
Turn-off delay time	$T_{J} = 25^{\circ}C$ $V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A}$	t _{d(off)}	-	286		
Fall time	$V_{CC} = 600 \text{ V}, I_C = 40 \text{ A}$ $R_c = 10 \Omega$	t _f	-	121	-	
Turn-on switching loss	$R_g = 10 \Omega$ $V_{GE} = 0 V/15V$	Eon		3.4	-	mJ
Turn-off switching loss		E _{off}	-	1.1	-	
Total switching loss		E _{ts}	-	4.5	-	
Turn-on delay time		t _{d(on)}	-	111	-	ns
Rise time		tr	-	43	-	
Turn-off delay time	T _J = 175°C	t _{d(off)}	-	304	-	
Fall time	$T_{J} = 175 ^{\circ}\text{C}$ $V_{CC} = 600 \text{V}, I_{C} = 40 \text{A}$ $R_{g} = 10 \Omega$ $V_{GE} = 0 \text{V} / 15 \text{V}$	t _f	· _	260	_	
Turn-on switching loss	V _{GE} = 0 V/ 15 V	Eon	20	4.4	6	mJ
Turn-off switching loss		Eoff		2.5		
Total switching loss		E _{ts}	-	6.9	-	

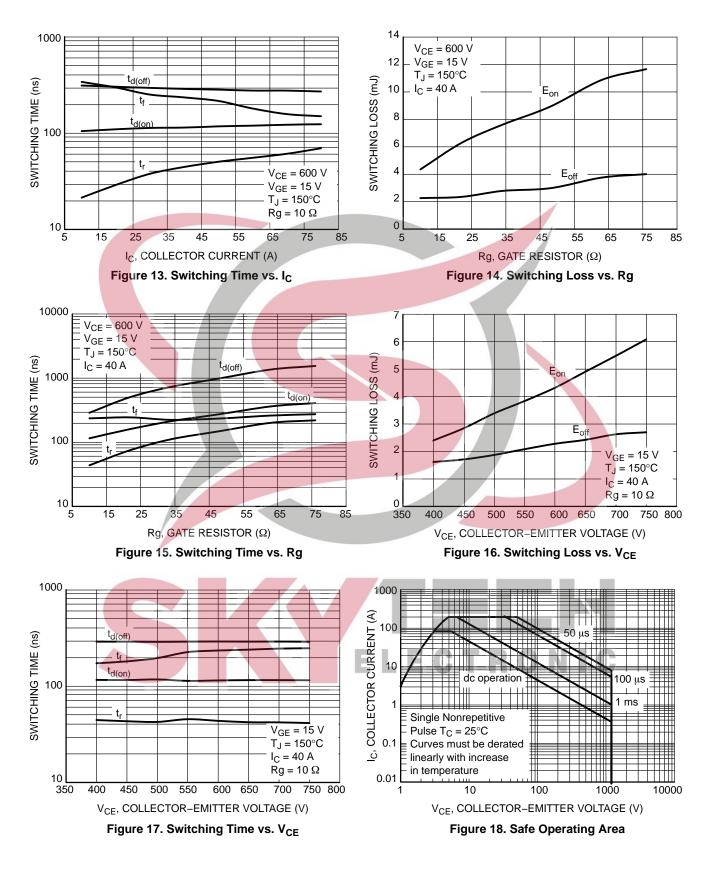

DIODE CHARACTERISTIC

Forward voltage	$V_{GE} = 0 \text{ V}, I_F = 40 \text{ A}$ $V_{GE} = 0 \text{ V}, I_F = 50 \text{ A}, T_J = 175^{\circ}\text{C}$	V _F	_ _	2.00 2.30	2.60 -	V
Reverse recovery time	T _J = 25°C I _F = 40 A, V _R = 400 V di _F /dt = 200 A/μs	t _{rr}	-	240	-	ns
Reverse recovery charge		Q _{rr}	-	2.5	-	μC
Reverse recovery current		I _{rrm}	-	18	-	A
Reverse recovery time	T _J = 175°C I _F = 40 A, V _R = 400 V di _F /dt = 200 A/μs	t _{rr}	-	392	-	ns
Reverse recovery charge		Q _{rr}	-	5.36	-	μC
Reverse recovery current		I _{rrm}	-	25.80	-	A

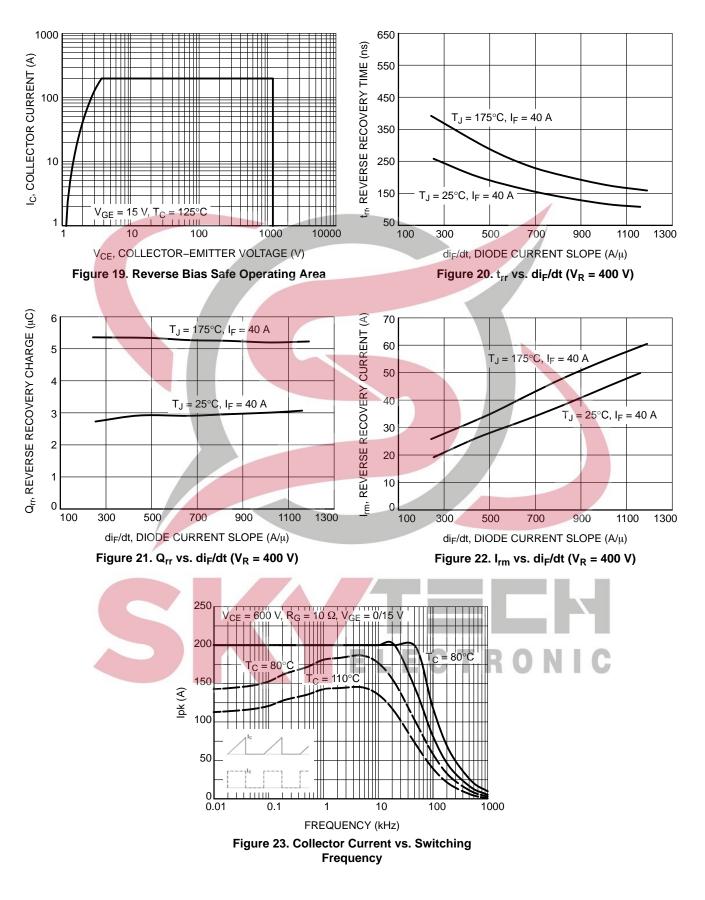

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

www.onsemi.com

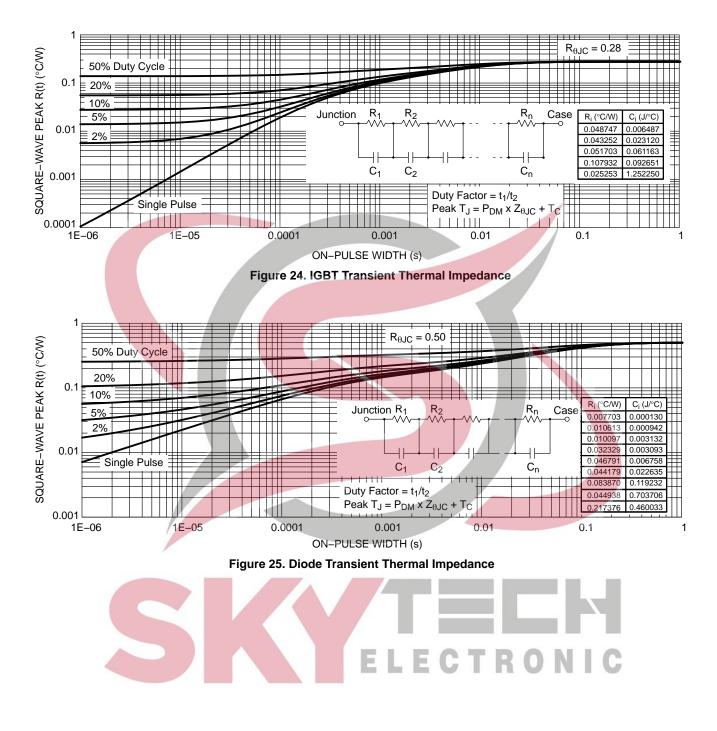
TYPICAL CHARACTERISTICS

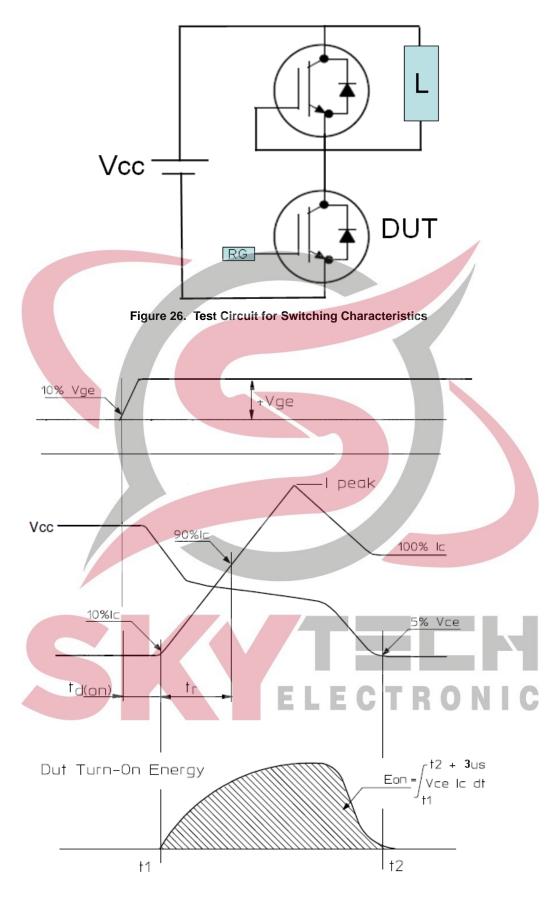


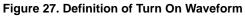
TYPICAL CHARACTERISTICS

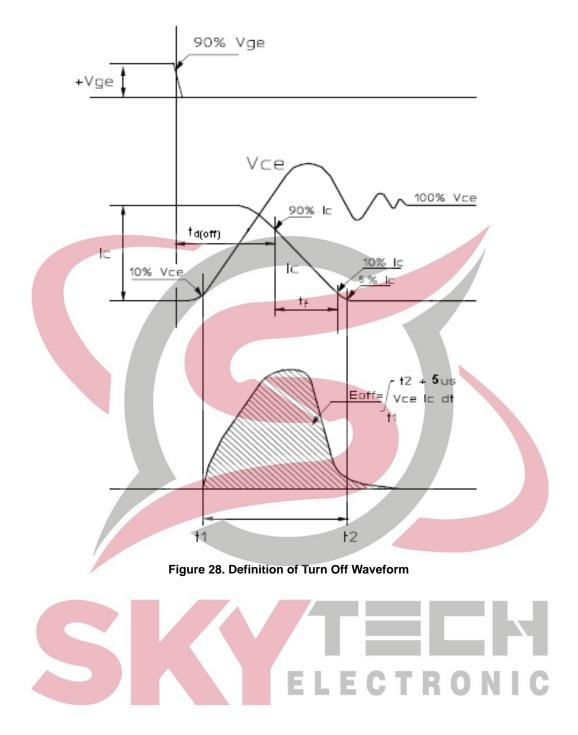


<u>www.onsemi.com</u>

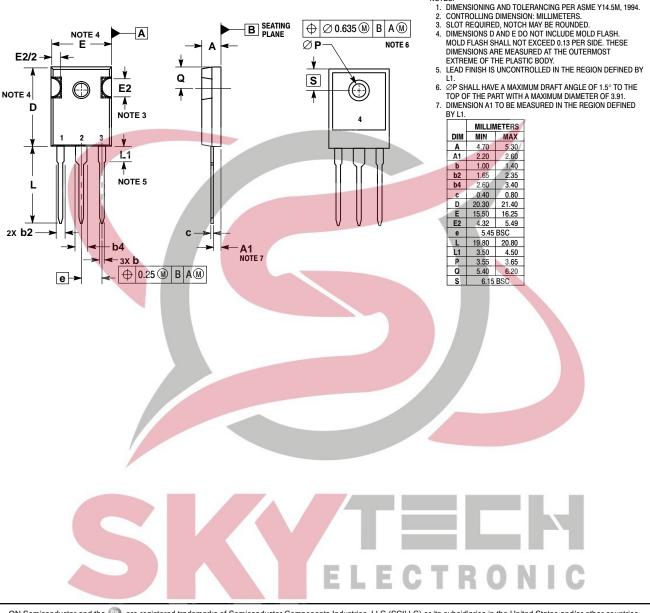

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS




TYPICAL CHARACTERISTICS

www.onsemi.com



PACKAGE DIMENSIONS

TO-247 CASE 340AL ISSUE A

NOTES

ON Semiconductor and the intervent and the intervent of the patient to the patient tof the patient of the patie

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information: